<=
Obsah
=>
Elementárne funkcie
Vyber ku grafom funkcií vľavo prislúchajúce funkčné predpisy a následne klini na tlačidlo zkontroluj.
Zkontroluj
???
f(x)=x²-9/4
f(x) = |x| + 1
f(x)=-x-1
f(x)=2x²-6x
f(x)=1/x + 1
f(x) = 2cos(x + π) + 1
f(x)=x²/|x| - 1
f(x)=x²-x-2
f(x)=2sin(x) + 1
f(x)=-x²-10x-24
???
f(x)=x²-9/4
f(x) = |x| + 1
f(x)=-x-1
f(x)=2x²-6x
f(x)=1/x + 1
f(x) = 2cos(x + π) + 1
f(x)=x²/|x| - 1
f(x)=x²-x-2
f(x)=2sin(x) + 1
f(x)=-x²-10x-24
???
f(x)=x²-9/4
f(x) = |x| + 1
f(x)=-x-1
f(x)=2x²-6x
f(x)=1/x + 1
f(x) = 2cos(x + π) + 1
f(x)=x²/|x| - 1
f(x)=x²-x-2
f(x)=2sin(x) + 1
f(x)=-x²-10x-24
???
f(x)=x²-9/4
f(x) = |x| + 1
f(x)=-x-1
f(x)=2x²-6x
f(x)=1/x + 1
f(x) = 2cos(x + π) + 1
f(x)=x²/|x| - 1
f(x)=x²-x-2
f(x)=2sin(x) + 1
f(x)=-x²-10x-24
???
f(x)=x²-9/4
f(x) = |x| + 1
f(x)=-x-1
f(x)=2x²-6x
f(x)=1/x + 1
f(x) = 2cos(x + π) + 1
f(x)=x²/|x| - 1
f(x)=x²-x-2
f(x)=2sin(x) + 1
f(x)=-x²-10x-24
???
f(x)=x²-9/4
f(x) = |x| + 1
f(x)=-x-1
f(x)=2x²-6x
f(x)=1/x + 1
f(x) = 2cos(x + π) + 1
f(x)=x²/|x| - 1
f(x)=x²-x-2
f(x)=2sin(x) + 1
f(x)=-x²-10x-24
???
f(x)=x²-9/4
f(x) = |x| + 1
f(x)=-x-1
f(x)=2x²-6x
f(x)=1/x + 1
f(x) = 2cos(x + π) + 1
f(x)=x²/|x| - 1
f(x)=x²-x-2
f(x)=2sin(x) + 1
f(x)=-x²-10x-24
???
f(x)=x²-9/4
f(x) = |x| + 1
f(x)=-x-1
f(x)=2x²-6x
f(x)=1/x + 1
f(x) = 2cos(x + π) + 1
f(x)=x²/|x| - 1
f(x)=x²-x-2
f(x)=2sin(x) + 1
f(x)=-x²-10x-24
???
f(x)=x²-9/4
f(x) = |x| + 1
f(x)=-x-1
f(x)=2x²-6x
f(x)=1/x + 1
f(x) = 2cos(x + π) + 1
f(x)=x²/|x| - 1
f(x)=x²-x-2
f(x)=2sin(x) + 1
f(x)=-x²-10x-24
???
f(x)=x²-9/4
f(x) = |x| + 1
f(x)=-x-1
f(x)=2x²-6x
f(x)=1/x + 1
f(x) = 2cos(x + π) + 1
f(x)=x²/|x| - 1
f(x)=x²-x-2
f(x)=2sin(x) + 1
f(x)=-x²-10x-24
Zkontroluj
OK
<=
Obsah
=>